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ABSTRACT 

This short essay briefly explores the behavior of electrons and their placement around atoms. 

Electron radial wavefunctions and probability densities are calculated and analyzed for various 

orbitals, quantum numbers, and atomic numbers.  

INTRODUCTION 

The conventional, classical idea of how far an electron of a certain orbital sits is relatively 

straightforward, and is taught in chemistry and even introductory physics classes as such. 

However, once one delves into the quantum mechanics behind this system, it is clear that the 

picture is a lot fuzzier than first thought. It is thus my interest to explore where the electron may 

sit according to quantum mechanics. As such, I have developed a script using a combination of 

equations from [1] and [2] to generally see for any atomic system, where a single electron of any 

l or n may sit. The script solves the equations numerically, providing a quick look of the systems.   

CALCULATION AND RESULTS 

To find these characteristics, it is important to first note the normalized radial wavefunction Rnl(r): 
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Where Z is the atomic number, α0 is the Bohr radius (0.053 nm), and L is the Laguerre polynomial. 

As an example, Figure 1 shows the Rnl(r) of an electron of a hydrogen atom. One would assume 

by this graph that the electron collapses into the nucleus, since the maximum value of its 

wavefunction and its probability density | Rnl(r)|2 (Figure 2) is at r = 0. However, [1] points out 

that when the wavefunction is at around r = 0, that the slope of the momentum increases. Hence, 

by the uncertainty principle, the location cannot be within that volume.  



 

Figure 1: Rnl(r) of hydrogen atom's single electron. 

 

Figure 2: |Rnl(r)|2 of hydrogen atom's single electron. 



If we calculate the reduced probability density: 

𝑃(𝑟) = |𝑅𝑛𝑙(𝑟)|2𝑟2 (2) 

Then we get something more expected (Figure 3), with a maximum at around the Bohr radius. This 

is clearly due to the r2 term. Interestingly, the probability that the electron surpasses the “classically 

forbidden region” is actually relatively high, at about 24%. This is calculated by integrating 

Equation (2) from 2α0 to infinity (as seen in Figure 4).  

 

Figure 3: P(r) of hydrogen atom’s single electron. 



 

Figure 4: P(r) of hydrogen atom’s single electron with the classically forbidden region hatched. 

Now, with that basis established, it is of interest to explore other systems. The simplest relationship 

we can see is for increasing Z. What happens then, with all else still equal (n = 1, l = 0), is that the 

electron is pulled closer to the nucleus, as seen in Figure 5. This is of course due to the attractive 

Coulomb force. Going back to the hydrogen atom (Z = 1), but increasing the quantum number to 

2, already produces something interesting. There are two likely spots for this electron to occupy. 

One is slightly less than the Bohr radius, and one is at about 5α0, as seen in Figure 6. This is due 

to the wavefunction’s tendency to change slope direction, as seen in Figure 7. However, there is a 

discrepancy between my relatively low resolution (1000 points per α0) program and literature [1]. 

Actually, the radial probability density should have a δ-function spike, as seen in Figure 8. 

Meanwhile, the numerical solver does not account for the lack of some infinitesimally small region 

where the slope = 0.  



 

Figure 5: P(r) of neon's 1s electron. 

 

Figure 6: P(r) of a hydrogen 2s electron. 



 

Figure 7: Rnl(r) of the hydrogen atom's 2s electron. 

 

Figure 8: |Rnl(r)|2 of the hydrogen atom's 2s electron from literature [1] (right) and by numerical 

calculation (left). 

CONCLUSION 

In this essay, we explored some of the dynamics of electron locality. Additionally, we noticed some 

algorithmic limitations when computing the radial wavefunctions numerically.  
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