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I ABSTRACT

The Crank-Nicolson (CN) method of
numerical computation has consistently seen
steady use for almost a century due to its
versatility and consistency, especially in the
matter of solving the heat equation. This
paper overviews the essential function and
operation of the method, and presents some
examples written in MATLAB.

II. BACKGROUND

The CN method was originally proposed in
1946 as a new way to numerically evaluate
partial differential equations (PDEs), with
respect to problems of heat flow and
generation. In the method’s original
treatment, the PDE example used is as
follows [1]:
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The proposed CN method would utilize finite
difference ratios replacing both time and
space derivatives. Replacing both derivatives
of equation (1) at point (mdx, (n + %) ét),
gives the form [1]:
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In this way the solution can now be
numerically solved in discrete time steps. The
most common way to visualize this is with a
grid overlapping an x-y graph, with time on
the y-axis and space on the x-axis [2].
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Figure 1: Visualization of CN method.

Utilizing equation (3), and all six points of the
grid in Figure 1, the temperature at each time
and space step can be numerically solved.

The CN method differed from others in that it
replaced both time and space derivates with
finite difference equations, and the steps in
time do not overlap [1]. In previously
proposed methods, overlapping time steps
would give errors manifesting as oscillations
in the solution. This would limit the size of
time steps used as the larger the time step, the
more oscillation is seen. With the CN method
having time steps that do not overlap, much
larger intervals can be wused without
oscillatory error. The so-called explicit
method (replacing the time derivative) suffers
from needing a very fine time mesh, which is
for many situations not suitable for analysis



and may take considerable time [1] [2]. This
is manifested in needing a very small 5¢/(6x)>.
Meanwhile, the main issue with the implicit
method (replacing the space derivative) was
in the high amount of compute necessary and
inaccuracies under certain conditions for the
time when computers were few and
barebones [1]. The CN method was faster
than the implicit method while allowing for a
higher 6t/(6x)*> compared to the explicit
method.

III.  APPLICATIONS AND EXAMPLES

An interesting point on the versatility of the
CN method is in the various ways the system
can be set up. For example, the boundaries
may exhibit Dirichlet conditions, where they
are held to a specific value, or they may be
allowed to change freely after the initial
condition is set. This allows for a variety of
practical systems to be simulated.

For example, the first example of the CN
method by [1] had the below boundary
conditions for a 1D system whose length was
1.

(0 = constantatt =0for0 <x <1,

w = constantatt =0for0 < x <1,

a0

] a:Hl(Q) fort > 0,x =0,
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In these boundary conditions, H;(@) is the
heat transfer function, which dictates how
much some external 8y permeates through the
material. This means that between the 0™
node and the 1% node in the spatial axis, their
difference in each calculation is dictated by
the heat transfer function specified.
Meanwhile, at the n™ and n-1% nodes, the

differential is 0, meaning that it is entirely
dependent on the previous time iteration and
whatever internal chemical reaction is
happening thanks to the w term. Evidently,
the method is very malleable, as this example
basically says that the central nodes are
computed as normal, however the edges are
computed with modifications to some of the
terms.

Figure 2 shows this situation for the halfway-
to and the center of the structure, where x =
> 1s halfway-to and x = [ is the center. The
solution with less x steps suffers from less
numerical stability as the method tries to
overcompensate due to the large gaps
between mesh points. [1] states that for
decent numerical stability, the J#/(dx)* ratio
should not surpass 4, and this includes the
diffusivity constant D that gets multiplied by
the ratio.
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Figure 2: Temperature-time curves for x = % and x = 1,
where the x grid is calculated with 8§ and 12 steps. [1]

To show the versatility, the next few sections
are several examples of the CN method in
action via simulation. It is important to note
that the example computed by [1] involved a
boundary condition being a source of heat
generation, hence the increasing of
temperature across the structure in Figure 2.
However, the examples produced in the next



sections generally involve strict heat
dissipation and thus cooling of the surface
over time, with heat inputted only for the
initial condition.

1. EXAMPLE 1: A SINGLE-MOMENT POINT OF
THERMAL FLUX

In this example, the initial conditions simply
involve a point of heat being applied
somewhere onto the structure. The boundary
conditions are simply a diffusivity of 1. The
mesh is also set up so that the 6#/(dx)* ratio
equals 1. Therefore, all of the conditions
seem as below:

O=1latt=0andx =0
6 = 0 otherwise
06

—=1fort >0,x =0and 0.9
0x
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Figure 3: Spatial-Transient mesh plot of Example 1
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Figure 4: Temperature-Transient plot of Example I across
three spatial slices (Note that x in the legend refers to which
x slice number; rather than where the x slice is. This is true

for all subsequent similar plots)
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Figure 5: Temperature-Spatial plot of Example 1 across
three time slices (Note that t in the legend refers to which t
slice number, rather than when the t slice is. This is true for
all subsequent similar plots)

As seen, with time the entire structure reaches
an equilibrium of about a hundredth of the
original injected temperature. The final result
is about a hundredth since it spreads
quadratically, thanks to the square on the ox
term.

2. EXAMPLE 2: REDUCING DIFFUSIVITY IN
THE SINGLE POINT OF THERMAL FLUX

This situation is identical to Example 1: A
single-moment point of thermal flux except



that D is reduced to 0.5, producing the below
conditions:

f=1latt=0andx =0
6 = 0 otherwise

a0
— =05fort >0,x =0and 0.9
0x

These conditions affect the system by
retaining the heat for longer near the right
surface, as is most directly comparable using
Figure 5 and Figure 8, where it can be seen
that as ¢ = 5, x = 0.1 and 0.2, respectively.
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Figure 6: Spatial-Transient mesh plot of Example 2
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Figure 7: Temperature-Transient plot of Example 2 across
three spatial slices
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Figure 8: Temperature-Spatial plot of Example 2 across

three time slices

3. EXAMPLE 3: ACTIVELY APPLYING SOME
TEMPERATURE AT ONE EDGE (DIRICHLET
BOUNDARY CONDITION)

In this example, let the initial condition be the
first quarter of a cosine wave, D equals 1, and
the right boundary condition is kept at 0, as
SO:
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6 =co (%) att=0for0<x <09
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—=1fort>0atx =0
dx
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—=—=0fort>0atx =09
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This creates the effect of having the right side
constantly at @ equals 0, while allowing the
left edge to modulate according to how heat
dissipates and spreads away from it.
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Figure 10: Temperature-Transient plot of Example 3 across
three spatial slices
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Figure 11: Temperature-Spatial plot of Example 3 across
three time slices

As is evident, especially from Figure 11, with
time, this situation causes the temperature to
drop with time across the structure towards

the temperature it is being held at, however
with a gradient where the initially heated
edge is always higher.

IV. CONCLUSIONS

In total, the CN method can see various uses
and scenarios, without compromising in
numerical stability. The situation which
causes instability comes down to improperly
meshing the problem in the time and space
domains, which is only logical as a lack of
detail will naturally produce errors in any
method.
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