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I. ABSTRACT 

The Crank-Nicolson (CN) method of 

numerical computation has consistently seen 

steady use for almost a century due to its 

versatility and consistency, especially in the 

matter of solving the heat equation. This 

paper overviews the essential function and 

operation of the method, and presents some 

examples written in MATLAB. 

II. BACKGROUND 

The CN method was originally proposed in 

1946 as a new way to numerically evaluate 

partial differential equations (PDEs), with 

respect to problems of heat flow and 

generation. In the method’s original 

treatment, the PDE example used is as 

follows [1]: 

𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑥2
− 𝑞

𝜕𝑤

𝜕𝑡
 (1) 

𝜕𝑤

𝜕𝑡
= −𝑘𝑤𝑒−𝐴/𝜃 (2) 

The proposed CN method would utilize finite 

difference ratios replacing both time and 

space derivatives. Replacing both derivatives 

of equation (1) at point (𝑚𝛿𝑥, (𝑛 +
1

2
) 𝛿𝑡), 

gives the form [1]: 

𝜃𝑚(𝑛 + 1) − 𝜃𝑚(𝑛) =
𝛿𝑡

2(𝛿𝑥)2
[𝜃𝑚−1(𝑛 + 1) +

𝜃𝑚+1(𝑛 + 1) + 𝜃𝑚−1(𝑛) + 𝜃𝑚+1 + 𝜃𝑚+1(𝑛) −

2{𝜃𝑚(𝑛 + 1) + 𝜃𝑚(𝑛)}] − 𝑞[𝑤𝑚(𝑛 + 1) − 𝑤𝑚(𝑛)]  

(3) 

 

In this way the solution can now be 

numerically solved in discrete time steps. The 

most common way to visualize this is with a 

grid overlapping an x-y graph, with time on 

the y-axis and space on the x-axis [2]. 

 

Figure 1: Visualization of CN method. 

Utilizing equation (3), and all six points of the 

grid in Figure 1, the temperature at each time 

and space step can be numerically solved. 

The CN method differed from others in that it 

replaced both time and space derivates with 

finite difference equations, and the steps in 

time do not overlap [1]. In previously 

proposed methods, overlapping time steps 

would give errors manifesting as oscillations 

in the solution. This would limit the size of 

time steps used as the larger the time step, the 

more oscillation is seen. With the CN method 

having time steps that do not overlap, much 

larger intervals can be used without 

oscillatory error. The so-called explicit 

method (replacing the time derivative) suffers 

from needing a very fine time mesh, which is 

for many situations not suitable for analysis 
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and may take considerable time [1] [2]. This 

is manifested in needing a very small δt/(δx)2. 

Meanwhile, the main issue with the implicit 

method (replacing the space derivative) was 

in the high amount of compute necessary and 

inaccuracies under certain conditions for the 

time when computers were few and 

barebones [1]. The CN method was faster 

than the implicit method while allowing for a 

higher δt/(δx)2 compared to the explicit 

method. 

III. APPLICATIONS AND EXAMPLES 

An interesting point on the versatility of the 

CN method is in the various ways the system 

can be set up. For example, the boundaries 

may exhibit Dirichlet conditions, where they 

are held to a specific value, or they may be 

allowed to change freely after the initial 

condition is set. This allows for a variety of 

practical systems to be simulated.  

For example, the first example of the CN 

method by [1] had the below boundary 

conditions for a 1D system whose length was 

1. 

{
 
 

 
 
𝜃 = constant at 𝑡 = 0 for 0 ≤ 𝑥 ≤ 1,
𝑤 = constant at 𝑡 = 0 for 0 ≤ 𝑥 ≤ 1,

𝜕𝜃

𝜕𝑥
= 𝐻1(𝜃) for 𝑡 ≥ 0, 𝑥 = 0,

𝜕𝜃

𝜕𝑥
= 0 for 𝑡 ≥ 0, 𝑥 = 1.

 

In these boundary conditions, H1(θ) is the 

heat transfer function, which dictates how 

much some external θ0 permeates through the 

material. This means that between the 0th 

node and the 1st node in the spatial axis, their 

difference in each calculation is dictated by 

the heat transfer function specified. 

Meanwhile, at the nth and n-1st nodes, the 

differential is 0, meaning that it is entirely 

dependent on the previous time iteration and 

whatever internal chemical reaction is 

happening thanks to the w term. Evidently, 

the method is very malleable, as this example 

basically says that the central nodes are 

computed as normal, however the edges are 

computed with modifications to some of the 

terms.  

Figure 2 shows this situation for the halfway-

to and the center of the structure, where x = 

½ is halfway-to and x = 1 is the center. The 

solution with less x steps suffers from less 

numerical stability as the method tries to 

overcompensate due to the large gaps 

between mesh points. [1] states that for 

decent numerical stability, the δt/(δx)2 ratio 

should not surpass 4, and this includes the 

diffusivity constant D that gets multiplied by 

the ratio.  

 

Figure 2: Temperature-time curves for x = ½ and x = 1, 

where the x grid is calculated with 8 and 12 steps. [1] 

To show the versatility, the next few sections 

are several examples of the CN method in 

action via simulation. It is important to note 

that the example computed by [1] involved a 

boundary condition being a source of heat 

generation, hence the increasing of 

temperature across the structure in Figure 2. 

However, the examples produced in the next 
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sections generally involve strict heat 

dissipation and thus cooling of the surface 

over time, with heat inputted only for the 

initial condition. 

1. EXAMPLE 1: A SINGLE-MOMENT POINT OF 

THERMAL FLUX 

In this example, the initial conditions simply 

involve a point of heat being applied 

somewhere onto the structure. The boundary 

conditions are simply a diffusivity of 1. The 

mesh is also set up so that the δt/(δx)2 ratio 

equals 1. Therefore, all of the conditions 

seem as below: 

{

𝜃 = 1 at 𝑡 = 0 and 𝑥 = 0
𝜃 = 0 otherwise

𝜕𝜃

𝜕𝑥
= 1 for 𝑡 ≥ 0, 𝑥 = 0 and 0.9

 

 

Figure 3: Spatial-Transient mesh plot of Example 1 

 

 

Figure 4: Temperature-Transient plot of Example 1 across 

three spatial slices (Note that x in the legend refers to which 

x slice number, rather than where the x slice is. This is true 

for all subsequent similar plots) 

 

Figure 5: Temperature-Spatial plot of Example 1 across 

three time slices (Note that t in the legend refers to which t 

slice number, rather than when the t slice is. This is true for 

all subsequent similar plots) 

As seen, with time the entire structure reaches 

an equilibrium of about a hundredth of the 

original injected temperature. The final result 

is about a hundredth since it spreads 

quadratically, thanks to the square on the δx 

term. 

2. EXAMPLE 2: REDUCING DIFFUSIVITY IN 

THE SINGLE POINT OF THERMAL FLUX 

This situation is identical to Example 1: A 

single-moment point of thermal flux except 
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that D is reduced to 0.5, producing the below 

conditions: 

{

𝜃 = 1 at 𝑡 = 0 and 𝑥 = 0
𝜃 = 0 otherwise

𝜕𝜃

𝜕𝑥
= 0.5 for 𝑡 ≥ 0, 𝑥 = 0 and 0.9

 

These conditions affect the system by 

retaining the heat for longer near the right 

surface, as is most directly comparable using 

Figure 5 and Figure 8, where it can be seen 

that as t = 5, x ≈ 0.1 and 0.2, respectively. 

 

Figure 6: Spatial-Transient mesh plot of Example 2 

 

Figure 7: Temperature-Transient plot of Example 2 across 

three spatial slices 

 

Figure 8: Temperature-Spatial plot of Example 2 across 

three time slices 

3. EXAMPLE 3: ACTIVELY APPLYING SOME 

TEMPERATURE AT ONE EDGE (DIRICHLET 

BOUNDARY CONDITION) 

In this example, let the initial condition be the 

first quarter of a cosine wave, D equals 1, and 

the right boundary condition is kept at 0, as 

so: 

{
 
 

 
 𝜃 = cos (

𝑥𝜋

20
)  at 𝑡 = 0 for 0 ≤ 𝑥 ≤ 0.9 

𝜕𝜃

𝜕𝑥
= 1 for 𝑡 ≥ 0 at 𝑥 = 0

𝜕𝜃

𝜕𝑥
=
𝜕𝜃

𝜕𝑡
= 0 for 𝑡 ≥ 0 at 𝑥 = 0.9

 

This creates the effect of having the right side 

constantly at θ equals 0, while allowing the 

left edge to modulate according to how heat 

dissipates and spreads away from it. 
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Figure 9: Spatial-Transient mesh plot of Example 3 

 

Figure 10: Temperature-Transient plot of Example 3 across 

three spatial slices 

 

Figure 11: Temperature-Spatial plot of Example 3 across 

three time slices 

As is evident, especially from Figure 11, with 

time, this situation causes the temperature to 

drop with time across the structure towards 

the temperature it is being held at, however 

with a gradient where the initially heated 

edge is always higher.  

IV. CONCLUSIONS 

In total, the CN method can see various uses 

and scenarios, without compromising in 

numerical stability. The situation which 

causes instability comes down to improperly 

meshing the problem in the time and space 

domains, which is only logical as a lack of 

detail will naturally produce errors in any 

method. 
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