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Project One: Three Phase Circuit 

Part One: The Circuit 

Initial Description: 

The circuit’s layout is a Y-to-Y with: 

• Three 120 V sources @ 60 Hz w/ 120° phase difference between each phase (positive 

phase sequence) 

• On each line: 

o A source impedance of 0.1 + j0.4 Ω  

o A line impedance of 2.9 + j1.6 Ω  

o A load impedance of 77 + j58 Ω  

Calculating values for the circuit: 

The real portion of each impedance will be characterized by a resistor with the given value. That 

is to say, the real portion of the source impedance will be characterized by a 0.1 Ω resistor, of the 

line impedance by a 2.9 Ω resistor, and of the load impedance by a 77 Ω resistor. 

For the imaginary portion, an inductor will be used. To find the value of the inductor, we use the 

following equation: 

𝑍 = 𝑗𝐿𝜔 (1) 

However, since we want to find the inductors’ inductances in Henrys, we must rearrange 

equation 1 as such: 



𝐿 =
𝑍

𝜔
 (2) 

The value of ω is constant for this problem: 

𝜔 = 2𝜋 ∗ 60 =  376.9911 (3) 

Thus, the value of each inductor, using equations 2 and 3, is as follows: 

𝐿𝑠𝑜𝑢𝑟𝑐𝑒 =
0.4

𝜔
=  0.00106 𝐻 

𝐿𝑙𝑖𝑛𝑒 =
1.6

𝜔
=  0.004244 𝐻 

𝐿𝑙𝑜𝑎𝑑 =
58

𝜔
=  0.15385 𝐻 

At last, our circuit will end up looking like this:  

 



To find the voltage drop across each impedance, we must first find the total impedance followed 

by the current. To find the total impedance, we add each component in series and then find the 

RMS of the real with the imaginary portion (we will begin with just the A phase): 

𝑍 = √𝑅2 + 𝑋𝐿
2  (4) 

𝑍𝑇𝐴 =  √802 + 602 = 100 Ω 

Then, we will need to eventually know the lag caused by the impedance on the current compared 

to the voltage: 

𝜙 = tan−1 (
𝑋𝐿

𝑅
) (5) 

𝜙𝐴 = tan−1(
60

80
) = 36.87° 

Now, we can calculate the current running through the A phase using simple Ohm’s law: 

𝐼 =
𝑉

𝑍
 (6) 

𝑰𝑇𝐴 =
𝑽𝑇𝐴

𝑍𝑇𝐴
=

120∠0°

100∠36.87°
= 1.2∠ − 36.87° 𝐴 

Since we are here, we can quickly calculate the rest of the phases’ currents using the above 

equation with the small modification of offsetting the voltage by +120° for the C phase and -

120° for the B phase: 

𝑰𝑇𝐵 =
𝑽𝑇𝐵

𝑍𝑇𝐵
=

120∠ − 120°

100∠36.87°
= 1.2∠ − 156.87° 𝐴 

𝑰𝑇𝐶 =
𝑽𝑇𝐶

𝑍𝑇𝐶
=

120∠120°

100∠36.87°
= 1.2∠83.13° 𝐴 



Now, with each of the phase currents calculated, we can do simple Ohm’s law to find the voltage 

drop across each impedance. For brevity, I will merely mention that I found each impedance in 

Ohms using equation 4 and the lag caused by each impedance using equation 5. 

𝑽𝑔𝐴 = 𝑰𝑇𝐴𝑍𝑔𝐴 = 1.2∠ − 36.87° ∗ .4123∠75.96° = .49476∠39.21° 𝑉 

𝑽𝑙𝐴 = 𝑰𝑇𝐴𝑍𝑙𝐴 =  1.2∠ − 36.87° ∗ 3.312∠28.89° = 3.974∠ − 7.86° 𝑉 

𝑽𝐴 = 𝑰𝑇𝐴𝑍𝐴 = 1.2∠ − 36.87° ∗ 96.4∠36.99° = 115.68∠0.24° 𝑉 

The same process is then used for the other two phases, using ITB and ITC instead of ITA. With 

those changes, the results are: 

𝑽𝑔𝐵 =  .49476 ∠ − 80.91° 𝑉 

𝑽𝑙𝐵 = 3.974∠ − 127.98° 𝑉 

𝑽𝐵 = 115.68∠ − 119.88° 𝑉 

𝑽𝑔𝐶 = .4947∠159.09° 𝑉 

𝑽𝑙𝐶 = 3.974∠112.02° 𝑉 

𝑽𝐶 = 115.68∠120.12°𝑉 

Note that VA, VB, and VC are the phase voltages across the loads. 

Now, to find the line voltages we apply the following equation to each of the phase voltages: 

𝑽𝑙𝑖𝑛𝑒 = 𝑽𝑝ℎ𝑎𝑠𝑒√3∠30° (7) 

Thus, we get the following results: 

𝑽𝐴𝐵 = 115.68∠0.24° ∗ √3∠30° =  200.36∠30.24° 𝑉 



𝑽𝐵𝐶 = 200.36∠ − 89.88° 𝑉 

𝑽𝐶𝐴 = 200.36∠150.12° 𝑉 

The signals of the circuit are as follows: 

 

A note for all graphs in this report:  

The voltage portion of the graphs signify the voltages measured at the load terminals. 

Part Two: Introducing Faults- Short Circuit 

In this simulation, I opted to short phase C’s load. The results are as follow: 



In comparison to the original circuit, the main difference is the C-phase line current, soaring to a 

max/min value of ±33.28 A, yet the A and B phase line currents remain the same ±1.2 A. Voltage 

is also altered for the BC and CA line voltages- ±115.68 V- while the AC line voltage remains the 

same at 200.36 V. Interestingly, this is the only test wherein the phase is significantly altered, as 

can be seen by the BC and CA line voltages having a tighter angle between one another.  

Part Three: Introducing Faults- Open Circuit 

In this simulation, I opted to increase phase C’s load by 10 kΩ as a crude way to simulate an 

open circuit. The results are as follow: 



Here, the differences between the line voltages are less pronounced, BC and CA only changing 

by ~0.85 V compared to default, and AB remains the same again. While the A and B line currents 

remain at ±1.2 A, the C line current comes down to about ±12 mA. 

Part Four: Introducing Faults- Uneven Balance 

In this simulation, I opted to- again- alter phase C’s load, by increasing the resistor value to 85 Ω 

and the inductor value to 0.18 H. The results are as follow: 



 

The variation from the default circuit is even less pronounced than Part Four: The line voltages 

of BC and CA only vary by ~0.5 V this time, and the C line current has new peaks at ±1.068 A. 

Part Five: The Circuit in Y-to-Δ Configuration 

In converting the configuration of the circuit from a Y-to-Y to a Y-to-Δ configuration, we must 

change the values of the load impedances. Thankfully, this is a simple ordeal, with the equation 

being: 

𝑍𝑌 =
𝑍Δ

3
 (8) 



Or rather, for our purposes for finding a ZΔ value: 

𝑍Δ = 3𝑍𝑌  (9) 

And of course, this means we must multiply our current load values, both resistor and inductor, 

by 3. Thus, our values are: 

𝑅𝑙𝑜𝑎𝑑 = 231 Ω 

𝐿𝑙𝑜𝑎𝑑 =  0.46155 𝐻 

Finally, our circuit will look like this: 

 

Once again, the first step in finding the voltage across each impedance is to find the values of 

those impedances in Ohms. Thankfully, since the calculations are done one branch at a time, as 

in with the Y-to-Y values in place, we can re-use the same impedance values as before: 



𝑍𝑇𝐴 = 100Ω 

𝜙𝐴 = 36.87° 

From here, finding the A-phase’s line current is just as simple as last time, reusing equation 7: 

𝑰𝑎𝐴 =
120∠0°

100∠36.87°
=  1.2∠ − 36.87° 𝐴 

Phase B and C are the same, just with a phase-shift of ±120°: 

𝑰𝑏𝐵 = 1.2∠ − 156.87° 𝐴  

𝑰𝑐𝐶 = 1.2∠83.13° 𝐴 

This time, the configuration allows the line and phase voltages to be the same, as opposed to the 

currents. Thus, to find the line voltage, we must first find it in the context of the Y-to-Y A-phase 

isolation: 

𝑽𝐴 = 1.2∠ − 36.87° ∗ 96.4∠36.99° =  115.68∠0.24° 𝑉 

Now we follow this with equation 7 to find the final value: 

𝑽𝐴𝐵 = 115.68∠0.24° ∗ √3∠30° = 200.36∠30.24° 

At this point one can notice that the above line voltage is the same as the one in Part One of this 

report. So, for brevity’s sake, I will leave it at that. Lastly, I will note that the voltage drops 

across the source and line impedances remain the same as well. 

However, what is not the same is that there is now a phase current. The phase current can be 

calculated very easily with the following formula: 



𝑰𝑝ℎ𝑎𝑠𝑒 = (
1

√3
∠30°) 𝑰𝑙𝑖𝑛𝑒 (10) 

 Therefore: 

𝑰𝐴𝐵 =  .6929∠ − 6.87° 𝐴 

𝑰𝐵𝐶 =  .6929∠ − 126.87° 𝐴 

𝑰𝐴𝐵 =  .6929∠113.13° 𝐴 

Thusly, all the signals will seem as such: 

Part Six: Introducing Faults- Short Circuit 



In this simulation, I opted to short phase C’s load. The results are as follow: 

 

In this case, a short circuit causes far more turmoil: the AB and BC line voltages drop their peak 

values to ±173.52 V and CA is a flat 0 V. Due to the absence of the CA line, the phase difference 

of the AB and BC lines is 180°. The B line current remains the same default ±1.2 A, but A and C 

line currents soar up to nearly ±29 A. Due to this, the A and C line currents nearly have a 180° 

phase difference between each other. The AB and BC phase currents lower slightly to ±0.6 A and 

the CA phase current reaches nearly- but not quite- 0 A. 

Part Seven: Introducing Faults- Open Circuit 



In this simulation, I opted to increase phase C’s load by 10 kΩ as a crude way to simulate an 

open circuit. The results are as follow: 

 

In this case, the voltages all throughout had minimal change, with the CA line having the largest 

difference from the default at ±205.17 V. The current, however, is all over the place, and to put it 

succinctly here is difficult. 

Part Eight: Final Summary and Conclusions 



For the summary, I would like to present the peak values in numerical form of the above graphs 

followed by my observations and personal remarks. Note that the values are not necessarily exact 

due to the imprecise nature of the simulation software. 

Y-to-Y summary: 

same/close 

slightly different 

very different 

AB Line 

Voltage 

A Line 

Current 

BC Line 

Voltage 

B Line 

Current 

CA Line 

Voltage 

C Line 

Current 

Max/Min Default 200.36 V 1.2 A 200.36 V 1.2 A 200.36 V 1.2 A 

Max/Min SC 200.36 V 1.2 A 115.68 V 1.2 A 115.68 V 33.28 A 

Max/Min OC 200.34 V 1.2 A 201.2 V 1.2 A 200.74 V 0.012 A 

Max/Min Unbal. 200.35 V 1.2 A 200.75 V 1.2 A 200.82 V 1.068 A 

 

Y-to-Δ summary: 

same/close 

slightly diff. 

very diff. 

AB 

Line 

Voltage 

A Line 

Current 

AB 

Phase 

Current 

BC 

Line 

Voltage 

B Line 

Current 

BC 

Phase 

Current 

CA 

Line 

Voltage 

C Line 

Current 

CA 

Phase 

Current 

Max/Min 

Default 

200.36 

V 

1.2 A 0.693 A 200.36 

V 

1.2 A 0.693 A 200.36 

V 

1.2 A 0.693 A 

Max/Min 

SC 

173.52 

V 

28.863 

A 

0.6 A 173.52 

V 

1.2 A 0.6 A 0 V 28.796 

A 

~ 0 A 

Max/Min 

OC 

201.42 

V 

0.715 A 0.696 A 201.73 

V 

1.197 A 0.698 A 205.17 

V 

0.696 A 0.020 A 

 

In general, it seems that with such systems, the largest issue that can arise is with the case of a 

short circuit, though the definition of an “open circuit” in the experiment being 10 kΩ may have 

played a part in the tame results. However, it does seem that through it all, a Y-to-Y system is far 

more stable when experiencing faults, perhaps due to the neutral line present at the intersection 

of the loads. 



A final small note may be made that the summary tables (and, with a couple exceptions, my 

observations throughout this paper) do not include phase angles. This is due to the challenge that 

it is to gather that data with the tools at hand. However, it must be stated that each fault causes a 

different mixture of phase angles to arise, imperceptible (or not) as they may be to the eye. In 

practice, these micro or macro differences in phase angles between the variables are very 

important and may create unstable and unwanted behavior. 


