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 My specifications were a Z0 of 58 Ω and a f0 of 2.8 GHz. 

3rd Order Coupled-Line Bandpass Filter: 

 Using Table 8.3 from the textbook I found the necessary 𝑔𝑛 for each section; equations of 

8.121 I could find the normalized 𝐽𝑛 values; and equations of 8.108 the even- and odd-mode 

impedances of each coupled line. 𝜋 was 0.1 since my assigned bandwidth was 10% and 𝑁 was 3. 
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𝑍0𝑒 = 𝑍0(1 + 𝐽𝑍0 + (𝐽𝑍0)2)   (8.108a) 

𝑍0𝑜 = 𝑍0(1 − 𝐽𝑍0 + (𝐽𝑍0)2)   (8.108b) 

𝑛 𝑔𝑛 𝑍0𝐽𝑛 𝑍0𝑒 (Ω) 𝑍0𝑜 (Ω) 

1 1 0.396 90.1 44.1 

2 2 0.111 65.2 52.3 

3 1 0.111 65.2 52.3 

4 1 0.396 90.1 44.1 

 

 Then, I ran the TXLine calculator until I managed the below values for the even-mode: 



 

Output for sections 𝑛 = 1,4 

 

Output for sections 𝑛 = 2,3 



 The calculated quarter-wavelength of 𝑓0 shown in the above pictures did not produce the 

appropriate results, so the design was adjusted by first placing 90° in the “Electrical Length” 

textbox and then further adjusting the length until the desired results appeared.  

 

 



 

Ceramic Resonator 4th Order Bandpass Filter: 

 The center frequency for this filter has been changed to 2𝑓0, bandwidth is still 10%. Table 

8.3 again provided the 𝑔𝑛 values; equations of 8.136 the normalized 𝐽𝑛 values; equations of 

8.137 the capacitor values for every 𝑛; and equation 8.141 to find the stub length for every 𝑛 

(note in that one that Δ𝐶𝑛 is a single variable, as opposed to Δ ∗ 𝐶𝑛). The 𝑁 is of course 4. For 

TXLine, I converted 𝑙𝑛 to degrees, and 𝜔0 is the center frequency in radians/second. 
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𝑛 𝑔𝑛 𝑍0𝐽𝑛−1,𝑛 𝐶𝑛−1,𝑛 (pF) Δ𝐶𝑛 (pF) 𝑙𝑛 (mm) 𝑙𝑛 (°) 

1 0.7654 0.320 0.1655 -0.1863 3.1758 68.22 

2 1.8478 0.0425 0.0208 -0.0531 3.9009 83.79 

3 1.8478 0.0660 0.0323 -0.0763 3.7746 81.08 

4 0.7654 0.0898 0.0440 -0.1933 3.1377 67.40 

5 1.0 0.320 0.1493 - - - 

 

 These mathematics work in an ideal scenario. To accommodate for the junctions, I had to 

subtract the width of the junctions from the stub length. Otherwise, the center frequency would 

be at 4.8 GHz.  

 



 

Notice on the schematic there are Ln and ln values. Ln means what was hand-calculated 

and ln is what TXLine calculates based on the electrical length I calculated. I tried to see if this 

would improve the filter response. It did not, as the graph below shows. 



 To fix the lumpy response, I tuned each stub length until I reached this result: 



 

 The bandwidth is not exceptional, however there is less loss at the center frequency and 

the passband is less lumpy. 

 

 Note for the layout above that the gaps are to accommodate for the lumped-element 

capacitors. 



Diplexer: 

 An effective Diplexer design does not allow the two I/O ports to suffer crosstalk. 

However, since at 5.6 GHz the 2.8 GHz filter exhibits a passband harmonic with a magnitude of 

-6 dB, the filter itself cannot deal with that issue. The graph below shows this behavior.  

 

Further, because the frequencies are multiples of 2 to one another, designing the Diplexer 

itself to block out the 5.6 GHz signals into the 2.8 GHz filter is not feasible. A better 

specification for this would be to have the two signals possess center frequencies that are 1.5 

times apart from one another, or perhaps nearly outside one another’s passband. 



 

 



 

 



4th Order Commensurate-Line Low-Pass Filter. 

 I first prototyped this filter using lumped elements, calculating them by using the 𝑔𝑛 

values from Table 8.3 for an 𝑁 of 4 (the same as the previous filter) and the equations of 8.67 to 

obtain the values seen in the schematic below. 
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 As seen in the graph above, this is precisely what we are looking for. From there, I 

applied Richard’s transformations and the first two of Kuroda’s identities until I got the desired 

circuit below (a scanned page of my hand-calculations is at the end of this summary).  

 

 However, my hand-calculated values shown above did not produce a suitable filter, as 

seen below.  



 

 By tuning the values, however, I managed the below circuit and filter response. 

 



 

 This result appears much more like what is expected, as per Figure 8.37 of the textbook, 

though the values assigned to manage this filter response is not scientifically robust.  



 


