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Project Two: Filters

Introduction

In this report, I will detail how to design a 1st order active low-pass filter who’s cutoff frequency
is 10k rad/s, what happens when one cascades three of those filters, how to correct the cutoff
frequency in that cascade design, and finally display a 3rd order Butterworth design so as to
show the benefits of such a design over three simple active low-pass filters. Throughout the
report, there will be Bode plots created via Matlab, circuit designs via Multisim, and all the

necessary mathematics to prove the results found.

A note to make ahead of time, I used the real component values instead of ideal, so the graphs

are a bit messy.
Part One: 1st Order Active Low-Pass

Designing a 1st order active low-pass filter is rather simple. Since we are creating a prototype
filter, we do not want the circuit to cause any gain. Therefore, we will mirror Ry and R»‘s values.
Then, to find the values for C and R that create a 10k rad/s cutoff frequency, we simply use this

formula:

1
wcsz_C(l)



So, since m will be 10,000, then the R multiplied with C must equate to 0.0001. Using
rfcafe.com’s! 2 tables of common values for resistors and capacitors, we come to the conclusion

that a 100Q resistor and a 1puF capacitor are decently common and give us our necessary value.

The circuit will thusly look like this:
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The transfer function of this circuit will be as follows:

—10000

H(s) = ————
() = 370000

However, it is known that for the Bode plot, we would like the equation in Bode plot form:

H(w) = 10000
o) = <+ 10000

Part Two: Cascade of Three Filters


https://www.rfcafe.com/references/electrical/resistor-values.htm
https://www.rfcafe.com/references/electrical/capacitor-values.htm

Cascading the above circuit thrice looks as such:
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For the transfer function of the total circuit, we simple multiply the 1st order transfer function

thrice:

H;(s) =

—100003

—100003

s34+ 30000s2 4+ 300000000 + 100003

H;(jw) =

And here we can see the Bode plot of the 1st order circuit and the 3rd order circuit:

(jw)3® +30000(jw)? + 300000000jw + 100003




First, and Third Order Active LP Filters
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As can be clearly seen, the cascaded circuit filters earlier and with a less steep slope all

throughout, making the filter far less precise.
Part Three: Correcting the Cascade

To alleviate the error in the above design, we can attempt to alter the values of the capacitors and

resistors. Our first step is to use the following formula to find the cutoff frequency offset:

We3 = W -1
Which nets us:

w3 = 5098 rad/s



Therefore, to adjust for the cascade, we write:

10000 _ 19615.2
.5098 '

Thus, an individual filter’s transfer function will look like:

H(jw) = —19615.2
@)= i+ 19615.2
And multiplying three of them together:

—19615.23

Hy(jw) =
3(j0) (jw)? + 58845(jw)? + 1.1542E + 09jw + 7.5471E + 12

Now, to find the resistor and capacitor values, we simply reuse equation 1:

1
(,()6-3 :—:>R2 :R4:R6:5119&C1:C2 :C3:1‘UF
RZCI

And of course, the plot of the 1st order, the cascade 3rd order, and the corrected cascade 3rd

order filters:



First, Third, and Fixed Third Order Active LP Filters
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And already the improvement is plainly visible, with the 1% Order and corrected 3™ Order graphs

overlapping at the cutoff point of 10k rad/s, while also having a nicer, steeper slope.
Part Four: 3rd Order Butterworth Filter

To begin designing, we should first know the transfer function of a Butterworth filter on its own.
Since we are designing a 3rd order filter, we will need one Butterworth low-pass filter circuit
cascaded with a simple active low-pass filter. Thus, we will need the transfer function of just a

single Butterworth and then we will multiply it with the simple filter.

A low-pass Butterworth filter on its own has the transfer function:



1
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When prototyping a 3rd order Butterworth, we want Ri =1and —— = 12, However, in our

C1 R2C4C,

case we want the values to equal 10,000 and 10,0007 respectively.

2
10000 = — = R = 100Q & €, = 2uF
RC,

Setting those values adjusts C> as well:

10000% =

= (C, = .5uF
Rzc,c, 2Tk

However, due to what parts are actually available, we must make concessions and set C; to

2.2uF, C> to .47pF, and R to 90.9Q).

Thus our circuit looks like this:
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And the Bode plots of this and the prior circuits is:



First, Third, Fixed Third, and Butterworth Third Order Active LP Filters
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Of course, completely according to plan, the Butterworth filter performs the best of all, as it has
the slimmest transition period. Unfortunately, due to the parts restriction, the filter’s cutoff point
is at about 11k rad/s, however an ideal Butterworth implementation hits the cutoff frequency

exactly on the spot along with having the excellent curve.
Conclusion

There is no doubt that the more complex a system becomes, the better its outputs are. The simple
Ist order filter did an alright job, and a (corrected) 3rd order of cascading design did better, but
there is no doubt a Butterworth is as best we can touch right now. Assuming ideal components,

all designs manage to have the cut-off filter at the right spot, but the major difference between



each design is how clean the transitions, how sharp the curves, are. The ideal is a straight vertical

line at the desired cutoff, but this is no ideal world.

With that said, here are some simple tables of the first five dBs of drop for each filter design:

1%t Order 3" Order 3" Order 3" Order
Butterworth Ideal | Butterworth Real

0dB 0 0 0 0

-1dB 5,110 5,550 7,880 8,980
-2dB 7,640 7,960 9,060 10,100
-3dB 9,970 9,940 9,999 11,000
-4dB 12,300 11,700 10,600 11,700
-5dB 14,700 13,400 11,300 12,400

The numbers corroborate the above graphs- the more advanced filters have a tighter angle. As
can be seen, the tighter angle even allows the slightly off-center real-value Butterworth filter to

have tighter allowance than the 1! order or the cascade 3™ order filters.
Part Five: Multisim Results

The only thing of note about these graphs is that they extend to a farther range and that the range

is in Hz instead of rad/s.
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